Parallel regulation of sterol regulatory element binding protein-2 and the enzymes of cholesterol and fatty acid synthesis but not ceramide synthesis in cultured human keratinocytes and murine epidermis.
نویسندگان
چکیده
After permeability barrier perturbation there is an increase in the mRNA levels for key enzymes necessary for lipid synthesis in the epidermis. The mechanism(s) responsible for this regulation is unknown. Sterol regulatory element binding proteins-1a, 1c, and -2 (SREBPs) control the transcription of enzymes required for cholesterol and fatty acid t synthesis in response to modulations of sterol levels. We now demonstrate that SREBP-2 is the predominant SREBP in human keratinocytes and murine epidermis, while SREBP-1 is not detected. Sterols regulate SREBP-2 mRNA levels in keratinocytes and the epidermis and the proteolytic cleavage of SREBP-2 to the mature active form in keratinocytes. In parallel to the increase in mature active SREBP, there is a coordinate increase in mRNA levels for cholesterol (HMG-CoA reductase, HMG-CoA synthase, farnesyl diphosphate synthase, and squalene synthase) and fatty acid (acetyl-CoA carboxylase, fatty acid synthase) synthetic enzymes. However, mRNA levels for serine palmitoyl transferase (SPT), the first committed step for ceramide synthesis, do not increase in parallel. The increase of mRNA for enzymes required for epidermal cholesterol and fatty acid synthesis is consistent with both the previously described early increase of cholesterol and fatty acid synthesis after barrier disruption and a role for SREBP-2 in the regulation of cholesterol and fatty acid synthesis for epidermal barrier homeostasis. In contrast, SPT appears to be regulated by different mechanisms, consistent with the different time course of its stimulation after barrier disruption.
منابع مشابه
Activation of cholesterol synthesis in preference to fatty acid synthesis in liver and adipose tissue of transgenic mice overproducing sterol regulatory element-binding protein-2.
We produced transgenic mice that express a dominant-positive truncated form of sterol regulatory element-binding protein-2 (SREBP-2) in liver and adipose tissue. The encoded protein lacks the membrane-binding and COOH-terminal regulatory domains, and it is therefore not susceptible to negative regulation by cholesterol. Livers from the transgenic mice showed increases in mRNAs encoding multiple...
متن کاملRegulation of sterol regulatory element binding proteins in livers of fasted and refed mice.
Hepatic lipid synthesis is known to be regulated by food consumption. In rodents fasting decreases the synthesis of cholesterol as well as fatty acids. Refeeding a high carbohydrate/low fat diet enhances fatty acid synthesis by 5- to 20-fold above the fed state, whereas cholesterol synthesis returns only to the prefasted level. Sterol regulatory element binding proteins (SREBPs) are transcripti...
متن کاملInsig-2, a second endoplasmic reticulum protein that binds SCAP and blocks export of sterol regulatory element-binding proteins.
This paper describes insig-2, a second protein of the endoplasmic reticulum that blocks the processing of sterol regulatory element-binding proteins (SREBPs) by binding to SCAP (SREBP cleavage-activating protein) in a sterol-regulated fashion, thus preventing it from escorting SREBPs to the Golgi. By blocking this movement, insig-2, like the previously described insig-1, prevents the proteolyti...
متن کاملRegulation of the CDP-choline pathway by sterol regulatory element binding proteins involves transcriptional and post-transcriptional mechanisms.
The synthesis of phosphatidylcholine (PtdCho) by the CDP-choline pathway is under the control of the rate-limiting enzyme CTP:phosphocholine cytidylyltransferase (CCT). Sterol regulatory element binding proteins (SREBPs) have been proposed to regulate CCT at the transcriptional level, or via the synthesis of lipid activators or substrates of the CDP-choline pathway. To assess the contributions ...
متن کاملSterol regulatory element-binding proteins (SREBPs): transcriptional regulators of lipid synthetic genes.
Roles of sterol regulatory element-binding proteins (SREBPs) have been established as lipid synthetic transcription factors especially for cholesterol and fatty acid synthesis. SREBPs have unique characteristics. Firstly, they are membrane-bound proteins and the N-terminal active portions enter nucleus to activate their target genes after proteolytic cleavage, which requires sterol-sensing mole...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of lipid research
دوره 39 2 شماره
صفحات -
تاریخ انتشار 1998